4.4 Article

Sub-nm accuracy metrology for ultra-precise reflective X-ray optics

Publisher

ELSEVIER
DOI: 10.1016/j.nima.2010.10.137

Keywords

X-ray optics; FEL; Synchrotron radiation; Metrology; NOM; LTP

Funding

  1. IRUVX-PP
  2. EU [211285]

Ask authors/readers for more resources

The transport and monochromatization of synchrotron light from a high brilliant laser-like source to the experimental station without significant loss of brilliance and coherence is a challenging task in X-ray optics and requires optical elements of utmost accuracy. These are wave-front preserving plane mirrors with lengths of up to 1 m characterized by residual slope errors in the range of 0.05 mu rad (rms) and values of 0.1 nm (rms) for micro-roughness. In the case of focusing optical elements like elliptical cylinders the required residual slope error is in the range of 0.25 mu rad rms and better. In addition the alignment of optical elements is a critical and beamline performance limiting topic. Thus the characterization of ultra-precise reflective optical elements for FEL-beamline application in the free and mounted states is of significant importance. We will discuss recent results in the field of metrology achieved at the BESSY-II Optics Laboratory (BOL) of the Helmholtz Zentrum Berlin (HZB) by use of the Nanometer Optical Component Measuring Machine (NOM). Different types of mirror have been inspected by line-scan and slope mapping in the free and mounted states. Based on these results the mirror clamping of a combined mirror/grating set-up for the BL-beamlines at FLASH was improved. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available