4.4 Article Proceedings Paper

Latest bialkali photocathode with ultra high sensitivity

Publisher

ELSEVIER
DOI: 10.1016/j.nima.2010.02.220

Keywords

Photomultiplier tube; Quantum efficiency; Ultra bialkali; Super bialkali; Dark Matter

Ask authors/readers for more resources

Among photosensitive devices in use today, the photomultiplier tube (PMT) is a versatile device providing extremely high sensitivity, exceptionally low noise and ultra-fast response. It can detect photons at ultra low light level such as single photon counting level. One of the most important characteristics of the PMT is the quantum efficiency (QE) of the photocathode. Among various kinds of photocathodes, a bialkali photocathode is commonly used for particle physics experiments since it has higher sensitivity and lower dark current than other photocathodes. QE of the conventional bialkali photocathode is 27%. Since 2007, we have made a significant improvement in the QE of the bialkali photocathode, achieving as high as 43% at peak wavelength by precise control of the photocathode activation process. This photocathode was named ultra bialkali (UBA) and was incorporated into PMTs successfully. Additionally, we have developed another new kind of bialkali photocathode for very low-temperature environments. At -175 degrees C, the new bialkali photocathode shows good cathode linearity up to 300 nA, and it has 28% QE and lower dark current than the UBA photocathode. A PMT with the new photocathode is expected to be an ideal detector for Dark Matter experiments or double-beta decay. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available