4.5 Review

Energetic particle physics in fusion research in preparation for burning plasma experiments

Journal

NUCLEAR FUSION
Volume 54, Issue 12, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0029-5515/54/12/125001

Keywords

energetic particles; burning plasmas; toroidal fusion devices; Alfven instabilities

Funding

  1. JSPS [21360457, 24360386]
  2. U S DOE [DE-AC02-09CH11466]
  3. Grants-in-Aid for Scientific Research [21360457] Funding Source: KAKEN

Ask authors/readers for more resources

The area of energetic particle (EP) physics in fusion research has been actively and extensively researched in recent decades. The progress achieved in advancing and understanding EP physics has been substantial since the last comprehensive review on this topic by Heidbrink and Sadler (1994 Nucl. Fusion 34 535). That review coincided with the start of deuterium-tritium (DT) experiments on the Tokamak Fusion Test Reactor (TFTR) and full scale fusion alphas physics studies. Fusion research in recent years has been influenced by EP physics in many ways including the limitations imposed by the 'sea' of Alfven eigenmodes (AEs), in particular by the toroidicity-induced AE (TAE) modes and reversed shear AEs (RSAEs). In the present paper we attempt a broad review of the progress that has been made in EP physics in tokamaks and spherical tori since the first DT experiments on TFTR and JET (Joint European Torus), including stellarator/helical devices. Introductory discussions on the basic ingredients of EP physics, i.e., particle orbits in STs, fundamental diagnostic techniques of EPs and instabilities, wave particle resonances and others, are given to help understanding of the advanced topics of EP physics. At the end we cover important and interesting physics issues related to the burning plasma experiments such as ITER (International Thermonuclear Experimental Reactor).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available