4.5 Article Proceedings Paper

Investigating behaviours of hydrogen in a tungsten grain boundary by first principles: from dissolution and diffusion to a trapping mechanism

Journal

NUCLEAR FUSION
Volume 50, Issue 2, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0029-5515/50/2/025016

Keywords

-

Funding

  1. Chinese National Fusion Project [2009GB106003]
  2. National Natural Science Foundation of China (NSFC) [50871009]

Ask authors/readers for more resources

We have investigated the dissolution, segregation and diffusion of hydrogen (H) in a tungsten (W) grain boundary (GB) using a first-principles method in order to understand the GB trapping mechanism of H. Optimal charge density plays an essential role in such a GB trapping mechanism. Dissolution and segregation of H are directly associated with the optimal charge density, which can be reflected by the H solution and segregation energy sequence for the different interstitial sites. To occupy the optimal-charge-density site, H can be easily trapped by the W GB with the solution and segregation energy of -0.23 eV and -1.11 eV, respectively. Kinetically, such a trapping is easier to realize due to the much lower diffusion barrier of 0.13-0.16 eV from the bulk to the GB in comparison with the segregation energy, suggesting that it is quite difficult for the trapped H to escape out of the GB. However, the GB can hold no more than 2 H atoms because the isosurface of optimal charge density almost disappears with the second H atom in, leading to the conclusion that H-2 molecule and thus H bubble cannot form in the W GB. Taking into account the lower vacancy formation energy in the GB as compared with the bulk, we propose that the experimentally observed H bubble formation in the W GB should be via a vacancy trapping mechanism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available