4.5 Article

Simulation of molten metal freezing behavior on to a structure

Journal

NUCLEAR ENGINEERING AND DESIGN
Volume 238, Issue 10, Pages 2706-2717

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.nucengdes.2008.04.008

Keywords

-

Funding

  1. Kyushu University and FZK, Germany
  2. Ministry of Education, Culture, Sports, Science and Technology, Japan

Ask authors/readers for more resources

In the severe accident analysis of liquid metal reactors (LMRs), understanding the freezing behavior of molten metal onto the core structure during the core disruptive accidents (CDAs) is of importance for the design of next-generation reactor. CDA can occur only under hypothetical conditions where a serious power-to-cooling mismatch is postulated. Material distribution and relocation of molten metal are the key study areas during CDA. In order to model the freezing behavior of molten metal of the postulated disrupted core in a CDA of an LMR and provide data for the verification of the safety analysis code, SIMMER-III, a series of fundamental experiments was performed to simulate the freezing behavior of molten metal during penetrating onto a metal structure. The numerical simulation was performed by SIMMER-III with a mixed freezing model, which represents both bulk freezing and crust formation. The comparison between SIMMER-III simulation and its corresponding experiment indicates that SIMMER-III can reproduce the freezing behavior observed on different structure materials and under various cooling conditions. SIMMER-III also shows encouraging agreement with experimental results of melt penetration on structures and particle formation. (C) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available