4.4 Article

Fundamental insights about environmental interface reactivity from DFT calculations of geochemical model systems

Journal

SURFACE SCIENCE
Volume 631, Issue -, Pages 48-56

Publisher

ELSEVIER
DOI: 10.1016/j.susc.2014.07.033

Keywords

Density functional theory; Bond-valence; Periodic slab models; Giant aluminum poly cations; Keggin-type species; Contaminant sorption

Funding

  1. NSF [CHE-0431425, CBET-0404400]
  2. National Research Council
  3. University of Iowa College of Liberal Arts and Sciences
  4. University of Iowa Center for Global and Regional Environmental Research

Ask authors/readers for more resources

The fact that essential chemical information about environmental interfaces is becoming accessible through density functional theory (DFT) studies provides researchers with a means to interpret experimental information, to predict properties that cannot be measured, and to develop conceptual, molecular-level understanding of structure-property relationships of these systems. Molecular studies of environmental interfaces require the use of structurally well-defined geochemical models, and in here we discuss the reactivity of mineral-water interfaces and aqueous aluminum hydroxide nanoparticles with ionic species. These adsorption processes are a major factor controlling pollutant transport and transformation. In the examples we highlight, DFT studies are used to extract new conceptual understanding of the underlying physical factors of the substrates that dictate reactivity. In particular, we review DFT studies used to rationalize an empirically determined reactivity trend of hydrated alumina and hematite towards Pb(II), and later review how DFT calculations of aqueous aluminum hydroxide nanoparticles along with experimental structural information helped to identify the electrostatic potential as a key factor in understanding particle reactivity towards cationic and anionic species. (C) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available