4.7 Article

A novel technique for the construction of strong S-boxes based on chaotic Lorenz systems

Journal

NONLINEAR DYNAMICS
Volume 70, Issue 3, Pages 2303-2311

Publisher

SPRINGER
DOI: 10.1007/s11071-012-0621-x

Keywords

Chaos; Lorenz system; Substitution box

Ask authors/readers for more resources

In cryptographic systems, the encryption process relies on the nonlinear mapping of original data or plaintext to the secure data. The mapping of data is facilitated by the application of the substitution process embedded in the cipher. It is desirable to have resistance against differential cryptanalysis, which assists in providing clues about the composition of keys, and linear secret system, where a simple approximation is created to emulate the original cipher characteristics. In this work, we propose the use of nonlinear functional chaos-based substitution process which employs a continuous time Lorenz system. The proposed substitution system eliminates the need of independent round keys in a substitution-permutation network. The performance of the new substitution box is evaluated by nonlinearity analysis, strict avalanche criterion, bit independence criterion, linear approximation probability, and differential approximation probability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available