4.7 Article

Investigating the nature of motion in 3D perturbed elliptic oscillators displaying exact periodic orbits

Journal

NONLINEAR DYNAMICS
Volume 69, Issue 4, Pages 1795-1805

Publisher

SPRINGER
DOI: 10.1007/s11071-012-0386-2

Keywords

Galaxies; Kinematics and dynamics; Dynamical indicators; Elliptic oscillators

Ask authors/readers for more resources

We study the nature of motion in a 3D potential composed of perturbed elliptic oscillators. Our technique is to use the results obtained from the 2D potential in order to find the initial conditions generating regular or chaotic orbits in the 3D potential. Both 2D and 3D potentials display exact periodic orbits together with extended chaotic regions. Numerical experiments suggest that the degree of chaos increases rapidly as the energy of the test particle increases. About 97 % of the phase plane of the 2D system is covered by chaotic orbits for large energies. The regular or chaotic character of the 2D orbits is checked using the S(c) dynamical spectrum, while for the 3D potential we use the S(c) spectrum, along with the P(f) spectral method. Comparison with other dynamical indicators shows that the S(c) spectrum gives fast and reliable information about the character of motion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available