4.3 Article

Inclusion of neutral guests by water-soluble macrocyclic hosts - a comparative thermodynamic investigation with cyclodextrins, calixarenes and cucurbiturils

Journal

SUPRAMOLECULAR CHEMISTRY
Volume 28, Issue 5-6, Pages 384-395

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/10610278.2015.1105374

Keywords

macrocycles; thermodynamics; Molecular recognition; neutral guests; hydrophobic effect

Funding

  1. NNSFC [21172119, 21322207]
  2. Deutsche Forschungsgemeinschaft DFG [NA-686/5, SPP 1807]
  3. Fonds der Chemischen Industrie
  4. Robert Bosch Foundation
  5. DAAD

Ask authors/readers for more resources

The driving forces of association between three different families of macrocycles as hosts, namely cyclodextrins (alpha-, beta-, and gamma-), p-sulfonatocalix[n]arenes (n=4-6) as well as cucurbit[n]urils (n=6-8), and three different bicyclic azoalkane homologues as guests, namely 2,3-diazabicyclo[2.2.1]hept-2-ene (DBH), 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) as well as 2,3-diazabicyclo[2.2.3]non-2-ene (DBN), were examined by means of calorimetric titrations, NMR spectroscopy and molecular dynamics simulation, all in aqueous solution. The small, spherical and uncharged guests preferably bind inside the cavities of the medium sized hosts. The inclusion complexation by beta-cyclodextrin and p-sulfonatocalix[4]arene shows medium binding affinities (millimolar), while cucurbit[7]uril macrocycle shows very strong binding (micromolar). For all types of macrocycles, the complex formation is enthalpically driven (Delta H degrees<0), accompanied by slightly unfavourable entropy changes (Delta S degrees<0). The results are discussed in terms of the flexibility of the hosts, the hydrophobic character of their cavities and the release of high-energy water upon binding, and generalised by including two additional guests, the ketones cyclopentanone and (+)-camphor.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available