4.4 Article

Monte Carlo study of a two-compartment exchange model of diffusion

Journal

NMR IN BIOMEDICINE
Volume 23, Issue 7, Pages 711-724

Publisher

JOHN WILEY & SONS LTD
DOI: 10.1002/nbm.1577

Keywords

diffusion; exchange; permeability; Monte Carlo; kurtosis; diffusion-weighted imaging; Karger model; axon

Funding

  1. New York University (NYU) High Performance Computing (HPC) group

Ask authors/readers for more resources

Multisite exchange models have been applied frequently to quantify measurements of transverse relaxation and diffusion in living tissues. Although the simplicity of such models is attractive, the precise relationship of the model parameters to tissue properties may be difficult to ascertain. Here, we investigate numerically a two-compartment exchange (Karger) model as applied to diffusion in a system of randomly packed identical parallel cylinders with permeable walls, representing cells with permeable membranes, that may serve particularly as a model for axons in the white matter of the brain. By performing Monte Carlo simulations of restricted diffusion, we show that the Karger model may provide a reasonable coarse-grained description of the diffusion-weighted signal in the long time limit, as long as the cell membranes are sufficiently impermeable, i.e. whenever the residence time in a cell is much longer than the time it takes to diffuse across it. For larger permeabilities, the exchange time obtained from fitting to the Karger model overestimates the actual exchange time, leading to an underestimated value of cell membrane permeability. Copyright (C) 2010 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available