4.4 Article

Diffusion-weighted imaging of the entire spinal cord

Journal

NMR IN BIOMEDICINE
Volume 22, Issue 2, Pages 174-181

Publisher

WILEY
DOI: 10.1002/nbm.1298

Keywords

diffusion MRI; spinal cord; reduced field of view; spine; diffusion-weighted imaging; diffusion tensor imaging

Funding

  1. National Center of Competence in Research on Neural Plasticity
  2. Repair of the Swiss National Science Foundation
  3. Philips Medical Systems, Best, The Netherlands

Ask authors/readers for more resources

In spite of their diagnostic potential, the poor quality of available diffusion-weighted spinal cord images often restricts clinical application to cervical regions, and improved spatial resolution is highly desirable. To address these needs, a novel technique based on the combination of two recently presented reduced field-of-view approaches is proposed, enabling high-resolution acquisition over the entire spinal cord. Field-of-view reduction is achieved by the application of non-coplanar excitation and refocusing pulses combined with outer volume suppression for removal of unwanted transition zones. The non-coplanar excitation is performed such that a gap-less volume is acquired in a dedicated interleaved slice order within two repetition times. The resulting inner volume selectivity was evaluated in vitro. In vivo diffusion tensor imaging data on the cervical, thoracic and lumbar spinal cord were acquired in transverse orientation in each of four healthy subjects. An in-plane resolution of 0.7 X 0.7 mm(2) was achieved without notable aliasing, motion or susceptibility artifacts. The measured mean +/- SD fractional anisotropy was 0.69 +/- 0.11 in the thoracic spinal cord and 0.75 +/- 0.07 and 0.63 +/- 0.08 in cervical and lumbar white matter, respectively. Copyright (C) 2009 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available