4.4 Article

Dinitrosyl iron complexes with glutathione as NO and NO+ donors

Journal

NITRIC OXIDE-BIOLOGY AND CHEMISTRY
Volume 29, Issue -, Pages 4-16

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.niox.2012.11.001

Keywords

Dinitrosyl iron complexes; Nitric oxide; Nitrosonium ion; S-nitrosation

Funding

  1. Russian Foundation for Basic Reseach [12-04-00346a]
  2. Presidium of Russian Academy of Siences within the framework Fundamental Sciences for Medicine

Ask authors/readers for more resources

It has been found that heating of solutions of the binuclear form of dinitrosyl iron complexes (B-DNIC) with glutathione in a degassed Thunberg apparatus (pH 1.0, 70 degrees C, 6 h) results in their decomposition with a concomitant release of four gaseous NO molecules per one B-DNIC. Further injection of air into the Thunberg apparatus initiates fast oxidation of NO to NO2 and formation of two GS-NO molecules per one B-DNIC. Under similar conditions, the decomposition of B-DNIC solutions in the Thunberg apparatus in the presence of air is complete within 30-40 min and is accompanied by formation of four GS-NO molecules per one B-DNIC. It is suggested that the latter events are determined by oxidation of B-DNIC iron and concominant release of four nitrosonium ions (NO+) from each complex. Binding of NO+ to thiol groups of glutathione provokes GS-NO synthesis. At neutral pH, decomposition of B-DNIC is initiated by strong iron chelators, viz., o-phenanthroline and N-methyl-D-glucamine dithiocarbamate (MGD). In the former case, the reaction occurs under anaerobic conditions (degassed Thunberg apparatus) and is accompanied by a release of four NO molecules from B-DNIC. Under identical conditions, MGD-induced decomposition of B-DNIC gives two EPR-active mononuclear mononitrosyl iron complexes with MGD (MNIC-MGD) able to incorporate two iron molecules and two NO molecules from each B-DNIC. The other two NO molecules released from B-DNIC (most probably, in the form of nitrosonium ions) bind to thiol groups of MGD to give corresponding S-nitrosothiols. Acidification of test solutions to pH 1.0 initiates hydrolysis of MGD and, as a consequence, decomposition of MNIC-MGD and the S-nitrosated form of MGD; the gaseous phase contains four NO molecules (as calculated per each B-DNIC). The data obtained testify to the ability of B-DNIC with glutathione (and, probably, of B-DNIC with other thiol-containing ligands) to release both NO molecules and nitrosonium ions upon their decomposition. As far as nitrosyl iron complexes with non-thiol-containing ligands predominantly represented by the mononuclear mononitrosyl iron form (MNIC) are concerned, their decomposition yields exclusively NO molecules. (C) 2012 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available