4.4 Article

Development of a quantitative bioassay to assess preventive compounds against inflammation-based carcinogenesis

Journal

NITRIC OXIDE-BIOLOGY AND CHEMISTRY
Volume 25, Issue 2, Pages 183-194

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.niox.2011.02.003

Keywords

Inflammatory cell attachment; Inflammation-related carcinogenesis; Nitric oxide; Oxygen radicals

Funding

  1. Grants-in-Aid for Scientific Research [22590262, 23590461] Funding Source: KAKEN

Ask authors/readers for more resources

Reducing cancer incidence and mortality by use of cancer-chemopreventive agents is an important goal. We have established an in vitro bioassay that is able to screen large numbers of candidate chemicals that are positive for prevention of inflammation-related carcinogenesis. To accomplish this we have added candidate chemicals or vehicles and freshly isolated, fluorescent dye-labeled inflammatory cells that were overlaid on TNF-alpha-stimulated mouse endothelial cells in a 96-well plate. Inhibition of inflammatory cell attachment to the endothelial cells by the chemicals was quantified by the intensity of fluorescence from the adherent inflammatory cells after removing unattached cells. Using this assay, we selected two chemicals, auraptene and turmerones, for further study. As an in vivo test, diets containing these test chemicals were administered to mice with a piece of foreign body, gelatin sponge, that had been implanted to cause inflammation, and we found that the number of inflammatory cells that infiltrated into the subcutaneously implanted gelatin sponge was reduced compared to that found in the mice fed with a control diet. Moreover, diets containing either of the two chemicals prevented inflammation-based carcinogenesis in a mouse model. We found that the compounds reduced not only the number of infiltrating cells but also the expression of inducible nitric oxide synthase (iNOS) or formation of 8-hydroxy-2'-deoxyguanine (8-OHdG) in the infiltrated cells. Moreover, both compounds but not controls sustained the reducing activity in the inflammatory lesion, and this finding was confirmed by using non-invasive in vivo electron spin resonance. The newly established in vitro screening assay will be useful for finding biologically effective chemopreventive agents against inflammation-related carcinogenesis. (C) 2011 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available