4.4 Article

p38MAPK and ERK promote nitric oxide production in cultured human retinal pigmented epithelial cells induced by high concentration glucose

Journal

NITRIC OXIDE-BIOLOGY AND CHEMISTRY
Volume 20, Issue 1, Pages 9-15

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.niox.2008.09.001

Keywords

Retinal pigment epithelial (RPE) cells; Nitric oxide (NO); Nitrotyrosine; High glucose; iNOS; MAPK

Ask authors/readers for more resources

Increased nitric oxide (NO) has been correlated with diabetic retinopathy. In this study we investigated the cell injury, production of NO in retinal pigment epithelial (RPE) cells exposed to increased glucose concentration, and its molecular mechanism involved. Cultured human RPE cells (ARPE-19) were exposed for 4 days with normal blood glucose concentration (5.5 mM D-glucose), followed by exposure to either normal (5.5 mM) or high (33 mM) concentrations of D-glucose for 48 h. To determine the cytotoxicity of high glucose, cell viability, ROS production and SOD activity were measured, respectively. The end product of NO (nitrite and nitrate) was determined by a colorimetric assay and nitrotyrosine levels were quantified by a competitive ELISA. The expression of iNOS and the activation of p38MAPK, ERK and JNK were analyzed by Western blot. Treatment of RPE cells with high glucose-induced a significant increased of iNOS, accompanied by an increase in cell damage, NO and nitrotyrosine levels. High glucose caused activation of p38MAPK and ERK, inhibition for p38MAPK and ERK abrogated the high glucose-induced increase in iNOS, cell injury and levels of NO and nitrotyrosine. High glucose causes increased cell damage and NO generation in RPE cells by a process of iNOS expression that requires the activation of p38MAPK and ERK. (c) 2008 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available