4.6 Article

The pitfalls of in vivo imaging techniques: evidence for cellular damage caused by synchrotron X-ray computed micro-tomography

Journal

NEW PHYTOLOGIST
Volume 220, Issue 1, Pages 104-110

Publisher

WILEY
DOI: 10.1111/nph.15368

Keywords

cell membrane; hydraulic recovery; microCT; RNA; X-ray damage; xylem embolism

Categories

Funding

  1. Elettra Sincrotrone Trieste [20165201, 20165277]

Ask authors/readers for more resources

Synchrotron X-ray computed micro-tomography (microCT) has emerged as a promising noninvasive technique for in vivo monitoring of xylem function, including embolism build-up under drought and hydraulic recovery following re-irrigation. Yet, the possible harmful effects of ionizing radiation on plant tissues have never been quantified. We specifically investigated the eventual damage suffered by stem living cells of three different species exposed to repeated microCT scans. Stem samples exposed to one, two or three scans were used to measure cell membrane and RNA integrity, and compared to controls never exposed to X-rays. Samples exposed to microCT scans suffered serious alterations to cell membranes, as revealed by marked increase in relative electrolyte leakage, and also underwent severe damage to RNA integrity. The negative effects of X-rays were apparent in all species tested, but the magnitude of damage and the minimum number of scans inducing negative effects were species-specific. Our data show that multiple microCT scans lead to disruption of fundamental cellular functions and processes. Hence, microCT investigation of phenomena that depend on physiological activity of living cells may produce erroneous results and lead to incorrect conclusions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available