4.6 Article

Arctic canopy photosynthetic efficiency enhanced under diffuse light, linked to a reduction in the fraction of the canopy in deep shade

Journal

NEW PHYTOLOGIST
Volume 202, Issue 4, Pages 1266-1276

Publisher

WILEY
DOI: 10.1111/nph.12750

Keywords

diffuse fraction; gross primary production; light-use efficiency; net ecosystem exchange of CO2; primary production; quantum yield; sky conditions

Categories

Funding

  1. Arctic LTER
  2. Toolik Lake Research Station
  3. NSF [DEB-1026843]
  4. ITEX [OPP-0807639]
  5. NERC
  6. Natural Environment Research Council [nceo020005, NE/K000292/1] Funding Source: researchfish
  7. NERC [NE/K000292/1, nceo020005] Funding Source: UKRI
  8. Direct For Biological Sciences
  9. Division Of Environmental Biology [1026843] Funding Source: National Science Foundation
  10. Direct For Biological Sciences
  11. Emerging Frontiers [1065587] Funding Source: National Science Foundation
  12. Directorate For Geosciences
  13. Office of Polar Programs (OPP) [1107707] Funding Source: National Science Foundation

Ask authors/readers for more resources

We investigated how radiation conditions within a tundra canopy were linked to canopy photosynthesis, and how this linkage explained photosynthetic sensitivity to sky conditions, that is total radiation and its diffuse fraction. We measured within canopy radiation at leaf scales and net CO2 exchanges at canopy scales, under varied total irradiance and diffuse fraction, in Alaskan shrub tundra. Normalised mean radiation profiles within canopies showed no significant differences with varied diffuse fractions. However, radiation density distribution was non-normal, being more unimodal under diffuse conditions and distinctly bimodal under direct sunlight. There was a nearly three-fold increase in the proportion of the canopy in deep shade under direct illumination, compared to diffuse conditions. Under diffuse conditions the canopy had higher light-use efficiency (LUE), resulting in up to 17% greater photosynthesis. The enhancement in LUE under diffuse illumination was not related to differences in the mean light profiles, but instead was due to significant shifts in the density distribution of light at leaf scales, in particular a reduced fraction of the canopy in deep shade under diffuse illumination. These results provide unique information for testing radiative transfer schemes in canopy models, and for better understanding canopy structure and trait variation within plant canopies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available