4.6 Article

The intracellular delivery of TAT-aequorin reveals calcium-mediated sensing of environmental and symbiotic signals by the arbuscular mycorrhizal fungus Gigaspora margarita

Journal

NEW PHYTOLOGIST
Volume 203, Issue 3, Pages 1012-1020

Publisher

WILEY
DOI: 10.1111/nph.12849

Keywords

arbuscular mycorrhizal (AM) fungi; calcium; cell-penetrating peptides; Gigaspora margarita; strigolactones; TAT-aequorin; TAT-GFP

Categories

Funding

  1. PRIN [prot. 2010CSJX4F]
  2. Progetti di Ricerca di Ateneo [prot. CPDA127210]
  3. University of Padua

Ask authors/readers for more resources

Arbuscular mycorrhiza (AM) is an ecologically relevant symbiosis between most land plants and Glomeromycota fungi. The peculiar traits of AM fungi have so far limited traditional approaches such as genetic transformation. The aim of this work was to investigate whether the protein transduction domain of the HIV-1 transactivator of transcription (TAT) protein, previously shown to act as a potent nanocarrier for macromolecule delivery in both animal and plant cells, may translocate protein cargoes into AM fungi. We evaluated the internalization into germinated spores of Gigaspora margarita of two recombinant TAT fusion proteins consisting of either a fluorescent (GFP) or a luminescent (aequorin) reporter linked to the TAT peptide. Both TAT-fused proteins were found to enter AM fungal mycelia after a short incubation period (5-10 min). Ca2+ measurements in G. margarita mycelia pre-incubated with TAT-aequorin demonstrated the occurrence of changes in the intracellular free Ca2+ concentration in response to relevant stimuli, such as touch, cold, salinity, and strigolactones, symbiosis-related plant signals. These data indicate that the cell-penetrating properties of the TAT peptide can be used as an effective strategy for intracellularly delivering proteins of interest and shed new light on Ca2+ homeostasis and signalling in AM fungi.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available