4.6 Review

Sensitivity of plants to changing atmospheric CO2 concentration: from the geological past to the next century

Journal

NEW PHYTOLOGIST
Volume 197, Issue 4, Pages 1077-1094

Publisher

WILEY
DOI: 10.1111/nph.12104

Keywords

climate change; CO 2; drought; fossils; global climate models; plant gas exchange; stomatal conductance; water use efficiency

Categories

Funding

  1. New Phytologist Trust and Trustees

Ask authors/readers for more resources

1077 I. 1078 II. 1079 III. 1080 IV. 1081 V. 1084 VI. 1087 VII. 1088 1089 References 1089 Summary The rate of CO2 assimilation by plants is directly influenced by the concentration of CO2 in the atmosphere, ca. As an environmental variable, ca also has a unique global and historic significance. Although relatively stable and uniform in the short term, global ca has varied substantially on the timescale of thousands to millions of years, and currently is increasing at seemingly an unprecedented rate. This may exert profound impacts on both climate and plant function. Here we utilise extensive datasets and models to develop an integrated, multi-scale assessment of the impact of changing ca on plant carbon dioxide uptake and water use. We find that, overall, the sensitivity of plants to rising or falling ca is qualitatively similar across all scales considered. It is characterised by an adaptive feedback response that tends to maintain 1ci/ca, the relative gradient for CO2 diffusion into the leaf, relatively constant. This is achieved through predictable adjustments to stomatal anatomy and chloroplast biochemistry. Importantly, the long-term response to changing ca can be described by simple equations rooted in the formulation of more commonly studied short-term responses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available