4.6 Review

Remote sensing of plant functional types

Journal

NEW PHYTOLOGIST
Volume 186, Issue 4, Pages 795-816

Publisher

WILEY
DOI: 10.1111/j.1469-8137.2010.03284.x

Keywords

continuous fields; discrete and continuous ecological traits; functional groups; imaging spectroscopy; LiDAR (light detection and ranging); optical types; plant functional types (PFT); remote sensing

Categories

Funding

  1. Department of Biological Science, Victoria University, Wellington, New Zealand

Ask authors/readers for more resources

Conceptually, plant functional types represent a classification scheme between species and broad vegetation types. Historically, these were based on physiological, structural and/or phenological properties, whereas recently, they have reflected plant responses to resources or environmental conditions. Often, an underlying assumption, based on an economic analogy, is that the functional role of vegetation can be identified by linked sets of morphological and physiological traits constrained by resources, based on the hypothesis of functional convergence. Using these concepts, ecologists have defined a variety of functional traits that are often context dependent, and the diversity of proposed traits demonstrates the lack of agreement on universal categories. Historically, remotely sensed data have been interpreted in ways that parallel these observations, often focused on the categorization of vegetation into discrete types, often dependent on the sampling scale. At the same time, current thinking in both ecology and remote sensing has moved towards viewing vegetation as a continuum rather than as discrete classes. The capabilities of new remote sensing instruments have led us to propose a new concept of optically distinguishable functional types ('optical types') as a unique way to address the scale dependence of this problem. This would ensure more direct relationships between ecological information and remote sensing observations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available