4.6 Article

Opto-nanomechanics strongly coupled to a Rydberg superatom: coherent versus incoherent dynamics

Journal

NEW JOURNAL OF PHYSICS
Volume 16, Issue -, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/16/6/063042

Keywords

cavity optomechanics; Rydberg physics; non-classical state preparation

Funding

  1. Alexander-von-Humboldt foundation
  2. ERC Synergy Grant UQUAM
  3. SFB FoQuS (FWF) [F4006-N16]
  4. Marie Curie Initial Training Network COHERENCE

Ask authors/readers for more resources

We propose a hybrid optomechanical quantum system consisting of a moving membrane strongly coupled to an ensemble of N atoms with a Rydberg state. Due to the strong van-der-Waals interaction between the atoms, the ensemble forms an effective two-level system, a Rydberg superatom, with a collectively enhanced atom-light coupling. Using this superatom imposed collective enhancement strong coupling between membrane and superatom is feasible for parameters within the range of current experiments. The quantum interface to couple the membrane and the superatom can be a pumped single mode cavity, or a laser field in free space, where the Rydberg superatom and the membrane are spatially separated. In addition to the coherent dynamics, we study in detail the impact of the typical dissipation processes, in particular the radiative decay as a source for incoherent superpositions of atomic excitations. We identify the conditions to suppress these incoherent dynamics and thereby a parameter regime for strong coupling. The Rydberg superatom in this hybrid system serves as a toolbox for the nanomechanical resonator allowing for a wide range of applications such as state transfer, sympathetic cooling and non-classical state preparation. As an illustration, we show that a thermally occupied membrane can be prepared in a non-classical state without the necessity of ground state cooling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available