4.6 Article

Collective force generated by multiple biofilaments can exceed the sum of forces due to individual ones

Journal

NEW JOURNAL OF PHYSICS
Volume 16, Issue -, Pages -

Publisher

IOP Publishing Ltd
DOI: 10.1088/1367-2630/16/6/063032

Keywords

non-equilibrium chemical switching; dynamics of biofilaments; collective force generation; actin and microtubules

Funding

  1. CSIR India [09/087(0572)/2009-EMR-I]
  2. IYBA, Department of Biotechnology India [BT/01/1YBA12009]

Ask authors/readers for more resources

Collective dynamics and force generation by cytoskeletal filaments are crucial in many cellular processes. Investigating growth dynamics of a bundle of N independent cytoskeletal filaments pushing against a wall, we show that chemical switching (ATP/GTP hydrolysis) leads to a collective phenomenon that is currently unknown. Obtaining force-velocity relations for different models that capture chemical switching, we show, analytically and numerically, that the collective stall force of N filaments is greater than N times the stall force of a single filament. Employing an exactly solvable toy model, we analytically prove the above result for N = 2. We, further, numerically show the existence of this collective phenomenon, for N >= 2, in realistic models (with random and sequential hydrolysis) that simulate actin and microtubule bundle growth. We make quantitative predictions for the excess forces, and argue that this collective effect is related to the non-equilibrium nature of chemical switching.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available