4.7 Article

Regenerative Neurogenesis After Ischemic Stroke Promoted by Nicotinamide Phosphoribosyltransferase-Nicotinamide Adenine Dinucleotide Cascade

Journal

STROKE
Volume 46, Issue 7, Pages 1966-1974

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/STROKEAHA.115.009216

Keywords

ischemic stroke; NAD; neurogenesis; neural stem cells; sirtuin

Funding

  1. National Natural Science Foundation of China [81373414, 81130061, 81473208, 81422049]
  2. National 863 Plan Young Scientist Program [2015AA020943]
  3. National Basic Research Program of China [2009CB521902]
  4. Shanghai Qimingxing project [14QA1404700]
  5. Shandong Province Natural Science Foundation [ZR2014HQ003]

Ask authors/readers for more resources

Background and Purpose Nicotinamide adenine dinucleotide (NAD) is a ubiquitous fundamental metabolite. Nicotinamide phosphoribosyltransferase (Nampt) is the rate-limiting enzyme for mammalian NAD salvage synthesis and has been shown to protect against acute ischemic stroke. In this study, we investigated the role of Nampt-NAD cascade in brain regeneration after ischemic stroke. Methods Nampt transgenic (Nampt-Tg) mice and H247A mutant enzymatic-dead Nampt transgenic (Nampt-Tg) mice were subjected with experimental cerebral ischemia by middle cerebral artery occlusion. Activation of neural stem cells, neurogenesis, and neurological function recovery were measured. Besides, nicotinamide mononucleotide and NAD, two chemical enzymatic product of Nampt, were administrated in vivo and in vitro. Results Compared with wild-type mice, Nampt-Tg mice showed enhanced number of neural stem cells, improved neural functional recovery, increased survival rate, and accelerated body weight gain after middle cerebral artery occlusion, which were not observed in Nampt-Tg mice. A delayed nicotinamide mononucleotide administration for 7 days with the first dose at 12 hours post middle cerebral artery occlusion did not protect acute brain infarction and neuronal deficit; however, it still improved postischemic regenerative neurogenesis. Nicotinamide mononucleotide and NAD(+) promoted proliferation and differentiation of neural stem cells in vitro. Knockdown of NAD-dependent deacetylase sirtuin 1 (SIRT1) and SIRT2 inhibited the progrowth action of Nampt-NAD axis, whereas knockdown of SIRT1, SIRT2, and SIRT6 compromised the prodifferentiation effect of Nampt-NAD axis. Conclusions Our data demonstrate that the Nampt-NAD cascade may act as a centralizing switch in postischemic regeneration through controlling different sirtuins and therefore represent a promising therapeutic target for long-term recovery of ischemic stroke.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available