4.6 Article

Anisotropic in-plane optical conductivity in detwinned Ba(Fe1-xCox)2As2

Journal

NEW JOURNAL OF PHYSICS
Volume 14, Issue -, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/14/2/023020

Keywords

-

Funding

  1. Swiss National Foundation for Scientific Research
  2. NCCR MaNEP pool
  3. Department of Energy, Office of Basic Energy Sciences [DE-AC02-76SF00515]
  4. Italian MIUR

Ask authors/readers for more resources

We study the anisotropic in-plane optical conductivity of detwinned Ba(Fe1-xCox)(2)As-2 single crystals for x = 0, 2.5 and 4.5% in a broad energy range (3 meV-5 eV) across their structural and magnetic transitions. For temperatures below the Neel transition, the topology of the reconstructed Fermi surface, combined with the distinct behavior of the scattering rates, determines the anisotropy of the low-frequency optical response. For the itinerant charge carriers, we are able to disentangle the evolution of the Drude weights and scattering rates and to observe their enhancement along the orthorhombic anti-ferromagnetic a-axis with respect to the ferromagnetic b-axis. For temperatures above the structural phase transition, uniaxial stress induces a finite in-plane anisotropy. The anisotropy of the optical conductivity, leading to significant dichroism, extends to high frequencies in the mid-and near-infrared regions. The temperature dependence of the dichroism at all dopings scales with the anisotropy ratio of dc conductivity, suggesting the electronic nature of the structural transition. Our findings bear testimony to a large nematic susceptibility that couples very effectively to the uniaxial lattice strain. In order to clarify the subtle interplay of magnetism and Fermi surface topology we compare our results with theoretical calculations obtained from density functional theory within the full-potential linear augmented plane-wave method.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available