4.6 Article

Robust quantum gates for open systems via optimal control: Markovian versus non-Markovian dynamics

Journal

NEW JOURNAL OF PHYSICS
Volume 14, Issue -, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/14/7/073023

Keywords

-

Funding

  1. EPSRC Advanced Research Fellowship [EP/D07192X/1]
  2. Hitachi
  3. Hitachi/EPSRC CASE studentship
  4. Engineering and Physical Sciences Research Council [EP/D07195X/2, EP/D07195X/1] Funding Source: researchfish
  5. EPSRC [EP/D07195X/2, EP/D07195X/1] Funding Source: UKRI

Ask authors/readers for more resources

We study the implementation of one-, two- and three-qubit quantum gates for interacting qubits using optimal control. Markovian and non-Markovian environments are compared and efficient optimization algorithms utilizing analytic gradient expressions and quasi-Newton updates are given for both cases. The performance of the algorithms is analysed for a large set of problems in terms of the fidelities attained and the observed convergence behaviour. New notions of success rate and success speed are introduced and density plots are utilized to study the effects of key parameters, such as gate operation times, and random variables such as the initial fields required to start the iterative algorithm. Core characteristics of the optimal fields are analysed statistically. Substantial differences between Markovian and non-Markovian environments in terms of the possibilities for control and the control mechanisms are uncovered. In the non-Markovian case, gate fidelities improve substantially when the details of the system bath coupling are taken into account, although imperfections such as field leakage can be a significant problem. In the Markovian case, computation time is saved if the fields are pre-optimized neglecting the environment, while including the latter generally does not significantly improve gate fidelities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available