4.6 Article

Multi-orbital and density-induced tunneling of bosons in optical lattices

Journal

NEW JOURNAL OF PHYSICS
Volume 14, Issue -, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/14/3/033021

Keywords

-

Funding

  1. DFG [GRK 1355]

Ask authors/readers for more resources

We show that multi-orbital and density-induced tunneling have a significant impact on the phase diagram of bosonic atoms in optical lattices. Off-site interactions lead to density-induced hopping, the so-called bond-charge interactions, which can be identified with an effective tunneling potential and can reach the same order of magnitude as conventional tunneling. In addition, interaction-induced higher-band processes also give rise to strongly modified tunneling, on-site and bond-charge interactions. We derive an extended occupation-dependent Hubbard model with multi-orbitally renormalized processes and compute the corresponding phase diagram. It substantially deviates from the single-band Bose-Hubbard model and predicts strong changes of the superfluid-to-Mott-insulator transition. In general, the presented beyond-Hubbard physics plays an essential role in bosonic lattice systems and has an observable influence on experiments with tunable interactions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available