4.6 Article

The electronic structure of a weakly correlated antiferromagnetic metal, SrCrO3: first-principles calculations

Journal

NEW JOURNAL OF PHYSICS
Volume 13, Issue -, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/13/5/053002

Keywords

-

Funding

  1. NSF of China
  2. 973 Program of China
  3. International Science and Technology Cooperation Program of China

Ask authors/readers for more resources

On the basis of our idea of degree modulation, by using systematic first-principles calculations, we study the electronic structure and magnetic properties of SrCrO3. Our results suggest that SrCrO3 is a weakly correlated antiferromagnetic (AF) metal, a very rare situation in transition-metal oxides. Among various possible AF states, C-type spin ordering with a small amount of orbital polarization (the d(xy) orbital is more occupied than the d(yz/zx) orbital) is favored. The detailed understanding of the mechanism that stabilizes the C-type AF state is analyzed on the basis of the competition between itinerant Stoner instability and superexchange, and our results suggest that magnetic instability rather than lattice or charge instabilities plays an important role in this system. The experimentally observed c-axis compressed tetragonal distortion can be naturally explained with the C-type AF state. By using the LDA + U method to study this system, we show that the wrong ground state will be obtained if U is large.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available