4.6 Article

Enhanced photoluminescence emission from two-dimensional silicon photonic crystal nanocavities

Journal

NEW JOURNAL OF PHYSICS
Volume 12, Issue -, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/12/5/053005

Keywords

-

Funding

  1. German Excellence Initiative via the Nanosystems Initiative Munich (NIM)
  2. TUM International Graduate School of Science and Engineering (IGSSE)
  3. TUM Institute for Advanced Study (IAS)

Ask authors/readers for more resources

We present a temperature-dependent photoluminescence study of silicon optical nanocavities formed by introducing point defects into two-dimensional photonic crystals. In addition to the prominent TO-phonon-assisted transition from crystalline silicon at similar to 1.10 eV, we observe a broad defect band luminescence from similar to 1.05 to similar to 1.09 eV. Spatially resolved spectroscopy demonstrates that this defect band is present only in the region where air holes have been etched during the fabrication process. Detectable emission from the cavity mode persists up to room temperature; in strong contrast, the background emission vanishes for T >= 150 K. An Arrhenius-type analysis of the temperature dependence of the luminescence signal recorded either in resonance with the cavity mode or weakly detuned suggests that the higher temperature stability may arise from an enhanced internal quantum efficiency due to the Purcell effect.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available