4.6 Article

Voltage controlled inversion of magnetic anisotropy in a ferromagnetic thin film at room temperature

Journal

NEW JOURNAL OF PHYSICS
Volume 11, Issue -, Pages -

Publisher

IOP Publishing Ltd
DOI: 10.1088/1367-2630/11/1/013021

Keywords

-

Funding

  1. Deutsche Forschungsgemeinschaft (DFG) [SFB 631, GR 1132/13, GO 944/3-1]
  2. German Excellence Initiative via the 'Nanosystems Initiative Munich (NIM)

Ask authors/readers for more resources

The control of magnetic properties by means of an electric field is an important aspect in magnetism and magnetoelectronics. We here utilize magnetoelastic coupling in ferromagnetic/piezoelectric hybrids to realize a voltage control of magnetization orientation at room temperature. The samples consist of polycrystalline nickel thin films evaporated onto piezoelectric actuators. The magnetic properties of these multifunctional hybrids are investigated at room temperature as a function of the voltage controlled stress exerted by the actuator on the Ni film. Ferromagnetic resonance spectroscopy shows that the magnetic easy axis in the Ni film plane is rotated by 90 degrees upon changing the polarity of the voltage V-p applied to the actuator. In other words, the in-plane uniaxial magnetic anisotropy of the Ni film can be inverted via the application of an appropriate voltage V-p. Using superconducting quantum interference device (SQUID) magnetometry, the evolution of the magnetization vector is recorded as a function of V-p and of the external magnetic field. Changing V-p allows to reversibly adjust the magnetization orientation in the Ni film plane within a range of approximately 70 degrees. All magnetometry data can be quantitatively understood in terms of the magnetic free energy determined from the ferromagnetic resonance experiments. These results demonstrate that magnetoelastic coupling in hybrid structures is indeed a viable option to control magnetization orientation in technologically relevant ferromagnetic thin films at room temperature.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available