4.6 Article

Confinement and propagation characteristics of subwavelength plasmonic modes

Journal

NEW JOURNAL OF PHYSICS
Volume 10, Issue -, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/10/10/105018

Keywords

-

Funding

  1. AFOSR MURI [FA9550-04-1-0434]
  2. NSF Nanoscale Science and Engineering Centre [DMI-0327077]
  3. Directorate For Engineering
  4. Div Of Civil, Mechanical, & Manufact Inn [0751621] Funding Source: National Science Foundation

Ask authors/readers for more resources

We have studied subwavelength confinement of the surface plasmon polariton modes of various plasmonic waveguides and examined their relative merits using a graphical parametric representation of their confinement and propagation characteristics. While the same plasmonic phenomenon governs mode confinement in all these waveguides, the various architectures can exhibit distinctive behavior in terms of effective mode area and propagation distance. We found that the waveguides based on metal and one dielectric material show a similar trade-off between energy confinement and propagation distance. However, a hybrid plasmon waveguide, incorporating metal, low index and high index dielectric materials, exhibits longer propagation distances for the same degree of confinement. We also point out that plasmonic waveguides with sharp features can provide an extremely strong local field enhancement, which is not necessarily accompanied by strong confinement of the total electromagnetic energy. In these waveguides, a mode may couple strongly to nearby atoms, but suffer relatively low propagation losses due to weak confinement.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available