4.6 Article

Dirac-point engineering and topological phase transitions in honeycomb optical lattices

Journal

NEW JOURNAL OF PHYSICS
Volume 10, Issue -, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/10/10/103027

Keywords

-

Ask authors/readers for more resources

We study the electronic structure and the phase diagram of noninteracting fermions confined to hexagonal optical lattices. In the first part, we compare the properties of Dirac points arising in the eigenspectrum of either honeycomb or triangular lattices. Numerical results are complemented by analytical equations for weak and strong confinements. In the second part, we discuss the phase diagram and the evolution of Dirac points in honeycomb lattices applying a tight-binding description with arbitrary nearest-neighbor hoppings. With increasing asymmetry between the hoppings the Dirac points approach each other. At a critical asymmetry the Dirac points merge to open an energy gap, thus changing the topology of the eigenspectrum. We analyze the trajectory of the Dirac points and study the density of states in the different phases. Manifestations of the phase transition in the temperature dependence of the specific heat and in the structure factor are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available