4.6 Article

Surface states and spin density wave periodicity in Cr(110) films

Journal

NEW JOURNAL OF PHYSICS
Volume 10, Issue -, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/10/2/023003

Keywords

-

Ask authors/readers for more resources

Using angle-resolved photoemission, we have mapped the dispersion relations and Fermi contours for surface-localized electron states onto clean and hydrogen-covered Cr(110) surfaces. In particular, we have probed the relationship between hydrogen adsorption and the evolution of the spin density wave (SDW) periodicity in chromium thin films observed previously. We find qualitatively similar surface band dispersion relations to those on W( 110) and Mo(110), although with a narrower bandwidth, broader spectral features, and a smaller impact from the spin-orbit interaction. We compare our results to existing first-principles calculations and find a significant disagreement for a surface band that produces a prominent surface Fermi contour. Upon hydrogen adsorption, the Fermi contour for a particular surface band becomes well nested at a wave vector that stabilizes a commensurate SDW. We suggest that a competition between commensurate two-dimensional (2D) and incommensurate 3D Fermi surface nesting plays an important role in the SDW energetics in thin Cr(110) films.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available