4.6 Article

Towards efficient polyoxometalate encapsulation in MIL-100(Cr): influence of synthesis conditions

Journal

NEW JOURNAL OF CHEMISTRY
Volume 36, Issue 4, Pages 977-987

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2nj20587d

Keywords

-

Ask authors/readers for more resources

The one-pot encapsulation of phosphotungstic acid in the metal-organic framework MIL-100(Cr) has been studied under different synthesis conditions. Both conventional and microwave heating methods have been explored for three different solvent systems: pure aqueous or organic (DMF) phase and biphasic mixtures (water/2-pentanol). Biphasic systems yielded crystals with similar textural properties as those formed in water. The use of DMF as solvent promotes the formation of gel-like solids with dual porosity and enhanced accessibility. The addition of phosphotungstic acid (PTA, H3PW12O40 center dot xH(2)O) to the MIL-100(Cr) synthesis mixture results in its direct encapsulation. P-31 MAS NMR, elemental analysis, N-2 adsorption and FT-IR spectroscopy confirm the incorporation of PTA in the sample. The highest PTA encapsulation loading (30 wt%) was obtained by synthesis with microwave heating in biphasic solvent systems (W/Cr molar ratio range between 0.5 and 0.25). Microwave irradiation decreases the time of synthesis (from 4 days to 3 hours) while the use of biphasic media preserves the PTA integrity without affecting the formation of the MOF. The interaction of PTA with the MIL-100(Cr) structure results in some loss of the Lewis acidity, while the Bronsted acidity is hardly affected.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available