4.2 Article

24(S)-Hydroxycholesterol induces RIPK1-dependent but MLKL-independent cell death in the absence of caspase-8

Journal

STEROIDS
Volume 99, Issue -, Pages 230-237

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.steroids.2015.02.007

Keywords

24S-Hydroxycholesterol; Cell death; Necroptosis; Receptor-interacting protein kinase 1; Mixed lineage kinase domain-like

Funding

  1. KAKENHI [25830041]
  2. Adaptable and Seamless Technology Transfer Program through target-driven RD, JST
  3. Foundation of Cosmetology Research
  4. MEXT-Supported Program for the Strategic Research Foundation at Private Universities in Japan
  5. Grants-in-Aid for Scientific Research [25830041] Funding Source: KAKEN

Ask authors/readers for more resources

24(S)-Hydroxycholesterol (24S-OHC), which is enzymatically produced in the brain, is known to play an important role in maintaining brain cholesterol homeostasis. We have previously reported that 24S-OHC induces a type of non-apoptotic programmed necrosis in neuronal cells expressing little caspase-8. Necroptosis has been characterized as a type of programmed necrosis in which activation of receptor-interacting protein kinase 1 (RIPK1), RIPK3, and mixed lineage kinase domain-like (MLKL) is involved in the signaling pathway. In the present study, we investigated the involvement of these three proteins in 24S-OHC-induced cell death. We found that RIPK1 but neither RIPK3 nor MLKL was expressed in human neuroblastoma SH-SY5Y cells, while all three proteins were expressed in human T lymphoma caspase-8-deficient Jurkat (Jurkat(Cas8-/-)) cells. In Jurkat(Cas8-/-) cells, tumor necrosis factor alpha (TNF alpha)-induced cell death was significantly suppressed by treatment with respective inhibitors of RIPK1, RIPK3, and MLKL. In contrast, only RIPK1 inhibitor showed significant suppression of 24S-OHC-induced cell death, and even this was less prominent than was observed in TNF alpha-induced cell death. In Jurkat(Cas8-/-) cells, knockdown of either RIPK1 or RIPK3 caused moderate but significant suppression of 24S-OHC-induced cell death, but no such effect was observed as a result of knockdown of MLKL. Collectively, these results suggest that, for both SH-SY5Y cells and Jurkat(Cas8-/-) cells, 24S-OHC-induced cell death is dependent on RIPK1 but not on MLKL. We therefore conclude that, in the absence of caspase-8 activity, 24S-OHC induces a necroptosis-like cell death which is RIPK1-dependent but MLKL-independent. (C) 2015 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available