4.5 Article

Differentiation of Human Neural Stem Cells into Motor Neurons Stimulates Mitochondrial Biogenesis and Decreases Glycolytic Flux

Journal

STEM CELLS AND DEVELOPMENT
Volume 24, Issue 17, Pages 1984-1994

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/scd.2015.0076

Keywords

-

Funding

  1. Parkinson's and Movement Disorders Center at Virginia Commonwealth University
  2. Harper's Hope ALS Research Fund

Ask authors/readers for more resources

Differentiation of human pluripotent stem cells (hPSCs) in vitro offers a way to study cell types that are not accessible in living patients. Previous research suggests that hPSCs generate ATP through anaerobic glycolysis, in contrast to mitochondrial oxidative phosphorylation (OXPHOS) in somatic cells; however, specialized cell types have not been assessed. To test if mitobiogenesis is increased during motor neuron differentiation, we differentiated human embryonic stem cell (hESC)- and induced pluripotent stem cell-derived human neural stem cells (hNSCs) into motor neurons. After 21 days of motor neuron differentiation, cells increased mRNA and protein levels of genes expressed by postmitotic spinal motor neurons. Electrophysiological analysis revealed voltage-gated currents characteristic of excitable cells and action potential formation. Quantitative PCR revealed an increase in peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1 alpha), an upstream regulator of transcription factors involved in mitobiogenesis, and several of its downstream targets in hESC-derived cultures. This correlated with an increase in protein expression of respiratory subunits, but no increase in protein reflecting mitochondrial mass in either cell type. Respiration analysis revealed a decrease in glycolytic flux in both cell types on day 21 (D21), suggesting a switch from glycolysis to OXPHOS. Collectively, our findings suggest that mitochondrial biogenesis, but not mitochondrial mass, is increased during differentiation of hNSCs into motor neurons. These findings help us to understand human motor neuron mitobiogenesis, a process impaired in amyotrophic lateral sclerosis, a neurodegenerative disease characterized by death of motor neurons in the brain and spinal cord.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available