4.7 Article

Universal Cardiac Induction of Human Pluripotent Stem Cells in Two and Three-Dimensional Formats: Implications for In Vitro Maturation

Journal

STEM CELLS
Volume 33, Issue 5, Pages 1456-1469

Publisher

WILEY-BLACKWELL
DOI: 10.1002/stem.1964

Keywords

cardiac differentiation; human pluripotent stem cells; in-vitro maturation

Funding

  1. Chemical Genomics Centre of the Max Planck Society
  2. Bundesinstitut fur Risikobewertung [FK-3-1329-471]
  3. IZKF Munster [Mu1/014/11]
  4. DFG [Mu1376/11-1]
  5. StemCellFactory project
  6. European Union
  7. German federal state North Rhine-Westphalia (NRW)

Ask authors/readers for more resources

Directed cardiac differentiation of human pluripotent stem cells (hPSCs) enables disease modeling, investigation of human cardiogenesis, as well as large-scale production of cardiomyocytes (CMs) for translational purposes. Multiple CM differentiation protocols have been developed to individually address specific requirements of these diverse applications, such as enhanced purity at a small scale or mass production at a larger scale. However, there is no universal high-efficiency procedure for generating CMs both in two-dimensional (2D) and three-dimensional (3D) culture formats, and undefined or complex media additives compromise functional analysis or cost-efficient upscaling. Using systematic combinatorial optimization, we have narrowed down the key requirements for efficient cardiac induction of hPSCs. This implied differentiation in simple serum and serum albumin-free basal media, mediated by a minimal set of signaling pathway manipulations at moderate factor concentrations. The method was applicable both to 2D and 3D culture formats as well as to independent hPSC lines. Global time-course gene expression analyses over extended time periods and in comparison with human heart tissue were used to monitor culture-induced maturation of the resulting CMs. This suggested that hPSC-CMs obtained with our procedure reach a rather stable transcriptomic state after approximately 4 weeks of culture. The underlying gene expression changes correlated well with a decline of immature characteristics as well as with a gain of structural and physiological maturation features within this time frame. These data link gene expression patterns of hPSC-CMs to functional readouts and thus define the cornerstones of culture-induced maturation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available