4.4 Review

3-Hydroxykynurenine: An intriguing molecule exerting dual actions in the Central Nervous System

Journal

NEUROTOXICOLOGY
Volume 34, Issue -, Pages 189-204

Publisher

ELSEVIER
DOI: 10.1016/j.neuro.2012.11.007

Keywords

3-Hydroxykynurenine; Kynurenine pathway; Neurological diseases; Oxidative stress; Brain damage; Redox modulation

Funding

  1. CONACyT [239954]

Ask authors/readers for more resources

Kynurenine pathway is gaining attention due to the many metabolic processes in which it has been involved. The tryptophan conversion into several other metabolites through this pathway provides neuronal and redox modulators useful for maintenance of major functions in the brain. However, when physiopathological conditions prevail i.e. oxidative stress, excitotoxicity, and inflammation - preferential formation and accumulation of toxic metabolites could trigger factors for degeneration in neurological disorders. 3-Hydroxykynurenine has been largely described as one of these toxic metabolites capable of inducing oxidative damage and cell death; consequently, this metabolite has been hypothesized to play a pivotal role in different neurological and psychiatric disorders. Supporting evidence has shown altered 3-hydroxykynurenine levels in samples of patients from several disorders. In contrast, some experimental studies have provided evidence of antioxidant and scavenging properties inherent to this molecule. In this review, we explored most of literature favoring one or the other concept, in order to provide an accurate vision on the real participation of this tryptophan metabolite in both experimental paradigms and human brain pathologies. Through this collected evidence, we provide an integrative hypothesis on how 3-hydroxykynurenine is exerting its dual actions in the Central Nervous System and what will be the course of investigations in this field for the next years. (C) 2012 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available