4.4 Article

Cadmium exposure induces mitochondria-dependent apoptosis in oligodendrocytes

Journal

NEUROTOXICOLOGY
Volume 30, Issue 4, Pages 544-554

Publisher

ELSEVIER
DOI: 10.1016/j.neuro.2009.06.001

Keywords

Oligodendrocytes; Cadmium; Apoptosis; Caspases; Bax; Cytochrome c; Mitochondria

Funding

  1. Multiple Sclerosis Society of Canada (MSSC)
  2. Canadian institutes of Health Research (CIHR)

Ask authors/readers for more resources

Cadmium toxicity has been associated with learning disabilities and Parkinsonian symptoms in humans. We have previously shown that cultured oligodendrocytes are directly damaged by cadmium exposure. Here, we characterized the molecular mechanisms underlying cadmium-induced cell death in oligodendrocyte progenitors (OLP). Cadmium caused a concentration-dependent decrease in cell viability as assessed by mitochondrial dehydrogenase activity and by the cellular release of lactate dehydrogenase (LDH). A short exposure (1 h) to cadmium (25-100 mu M), followed by several hours of recovery, produced a predominant apoptotic mechanism of cell death, involving the mitochondrial intrinsic pathway, as evidenced by nuclear condensation, DNA fragmentation, bax integration into the outer mitochondrial membrane, cytochrome c release, and activation of caspases-9 and -3. Pretreatment of OLPs with the pan-caspase inhibitor, zVAD-fmk, prevented caspase-3 activation but only slightly reduced cell death 11 h after cadmium exposure and failed to prevent cadmium-induced bax insertion into the mitochondrial membrane. In contrast, the anti-oxidant N-acetyl cysteine blocked caspase-3 activation and significantly protected OLPs from cadmium-induced cell death. Continuous exposure (18-48 h) of OLPs to low micromolar concentrations (0.001-25 mu M) of cadmium significantly decreased mitochondrial metabolic activity, increased LDH leakage starting at 5 mu M and maximally activated caspase-3. These results suggest that cadmium induces OLP cell death mainly by apoptosis, and at higher concentrations or with prolonged exposure to the heavy metal there is an increase in cytoplasmic membrane damage, an index of necrosis. More importantly, transient exposure to cadmium is sufficient to damage OLPs and could in principle impair myelination in the neonate. (C) 2009 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available