4.4 Article

Development of a physiologically based pharmacokinetic and pharmacodynamic model to determine dosimetry and cholinesterase inhibition for a binary mixture of chlorpyrifos and diazinon in the rat

Journal

NEUROTOXICOLOGY
Volume 29, Issue 3, Pages 428-443

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.neuro.2008.02.004

Keywords

cholinesterase; organophosphorus insecticide; chlorpyrifos; diazinon; mixtures

Funding

  1. NIOSH CDC HHS [R01 OH 003629, R01 OH 008173] Funding Source: Medline

Ask authors/readers for more resources

Physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) models have been developed for the organophosphorus (OP) insecticides chlorpyrifos (CPF) and diazinon (DZN). It is anticipated that these CPs could interact at a number of important metabolic steps including: CYP450 mediated activation/detoxification, B-esterases [carboxylesterase (CaE), butyrylcholinesterase (BuChE) and acetylcholinesterase (AChE)] or PON-1 (A-esterase) oxon detoxification. We developed a binary PBPK/PD model for CPF, DZN and their metabolites based on previously published models for the individual insecticides. The metabolic interactions (CYP450) between CPF and DZN were evaluated in vitro and suggests that CPF is more substantially metabolized to its oxon metabolite than DZN, which is consistent with observed in vivo potency (CPF > DZN). Each insecticide inhibited the other's in vitro metabolism in a concentration-dependent manner. The PBPK model code used to describe the metabolism of CPF and DZN was modified to reflect the type of CYP450 inhibition kinetics (i.e. competitive vs. non-competitive), while B-esterase metabolism was described as dose-additive, and no PON-1 interactions were assumed between CPF- and DZN-oxon with the enzyme. The binary model was then evaluated against previously published rodent dosimetry and cholinesterase (ChE) inhibition data for the mixture. The PBPK/PD model simulations of the acute oral exposure to single-mixtures (15 mg/kg) vs. binary-mixtures (15 + 15 mg/kg) of CFP and DZN resulted in no differences in the predicted pharmacokinetics of either the parent OPs or their respective metabolites, while cholinesterase inhibition was reasonably described using the dose-additive model. A binary oral dose of CPF + DZN (60 + 60 mg/kg) did result in observable changes in the DZN pharmacokinetics where C-max was more reasonably fit by modifying the absorption parameters. It is anticipated that at low environmentally relevant binary doses, most likely to be encountered in occupational or environmental related exposures, that the pharmacokinetics are expected to be linear, and ChE inhibition dose-additive. (C) 2008 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available