4.4 Article

Knockdown of TFPI-2 promotes migration and invasion of glioma cells

Journal

NEUROSCIENCE LETTERS
Volume 497, Issue 1, Pages 49-54

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.neulet.2011.04.027

Keywords

Brain tumor; Tumor suppressor; Tumor microenvironment; ECM degradation; Cell proliferation; MMPs

Categories

Ask authors/readers for more resources

Glioblastoma is the most malignant primary brain tumor. Due to its highly promigratory and proinvasive properties, standard therapy including surgery, chemotherapy and radiation fails in eradicating this highly aggressive type of cancer. Here, we evaluated the role of TFPI-2, a Kunitz-type serine protease inhibitor, which has been previously described as a tumor suppressor gene in several types of cancer, including glioma. TFPI-2 expression was absent in five of nine investigated high-grade glioma cell lines. Lentiviral knockdown of TFPI-2 in two of the TFPI-2-expressing cell lines (MZ-18 and Hs 638) was associated with pronounced changes in the cellular behavior: glioma cell proliferation, migration and invasion were significantly increased in TFPI-2 knockdown cells in comparison to empty vector-transfected control cells. Since TFPI-2 might exert its tumor suppressor function by inhibiting MMPs, we subsequently analyzed the effects of specific MMP inhibitors on cell invasion of TFPI-2 KD cells vs. control cells. The data obtained from these experiments suggest that the anti-invasive properties of TFPI-2 are associated with inhibition of MMP-1 and MMP-2, while inhibition of MMP-9 seems to play a minor role in this context. Our findings underscore the important role of TFPI-2 as a tumor suppressor gene and indicate that TFPI-2 may be a useful diagnostic marker for the aggressive phenotype of glial tumors. (C) 2011 Elsevier Ireland Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available