4.4 Article

Methionine diet-induced hyperhomocysteinemia accelerates cerebral aneurysm formation in rats

Journal

NEUROSCIENCE LETTERS
Volume 494, Issue 2, Pages 139-144

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.neulet.2011.02.076

Keywords

Animal model; Hyperhomocysteinemia; Cerebral aneurysm; Etiology

Categories

Funding

  1. National Nature Science Foundation of China [30772229]

Ask authors/readers for more resources

Background and purpose: The pathophysiology of cerebral aneurysms (CA) is linked to chronic inflammation. Endothelial damage is one of the first changes in CA walls resulted from inflammation. It has been shown that increase in plasma homocysteine (Hcy) impairs vascular endothelium and correlates with the development of atherosclerosis. However, the effect of hyperhomocysteinemia (HHcy) on the formation of cerebral aneurysm remains unknown. Methods: Male Sprague-Dawley rats examined for developing cerebral aneurysms after surgical induction in the presence and absence of hypercysteinemia induced by a high L-methionine diet (1 g/kg/d). Aneurysms developed at the anterior cerebral-olfactory artery bifurcation were classified as 4 stages from no abnormality to saccular aneurysm. Plasma homocysteine levels and expression of vascular endothelial growth factor (VEGF), endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), matrix metalloproteinase-2 (MMP-2), and MMP-9 in aneurysmal walls was examined and correlated with CA formation 3 months after surgery. Results: Methionine diet significantly increased plasma homocysteine levels, accelerates CA formation after ligation of the left common carotid artery. Expression of VEGF, iNOS, MMP-2, and MMP-9 in aneurysmal walls was also increased by methionine treatment. Conclusion: Hyperhomocysteinemia accelerates cerebral aneurysm formation, potentially through differential effects on expression of molecules critical for vascular wall modeling in a rat model. (C) 2011 Elsevier Ireland Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available