4.4 Article

Time- and concentration-dependent activation of TRPA1 by hydrogen sulfide in rat DRG neurons

Journal

NEUROSCIENCE LETTERS
Volume 499, Issue 2, Pages 137-142

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.neulet.2011.05.057

Keywords

Hydrogen sulfide; TRPA1; Dorsal root ganglion

Categories

Funding

  1. Japan Society for the Promotion of Science

Ask authors/readers for more resources

Hydrogen sulfide (H(2)S) is considered as a gasotransmitter. Although several reports have shown that H(2)S stimulates sensory neurons, the primary targets of H(2)S remain controversial. We investigated the effects of H(2)S on cultured sensory neurons isolated from rat dorsal root ganglion (DRG) using Ca(2+) imaging and whole-cell voltage-clamp techniques. Brief (2 min) application of NaHS (1 mM), a donor of H(2)S, evoked marked increases in intracellular Ca(2+) concentration ([Ca(2+)](i)) in a subset of DRG neurons. These neurons also responded to both capsaicin and mustard oil (MO), transient receptor potential vanilloid 1 (TRPV1) and ankyrin 1 (TRPA1) agonists, respectively. The NaHS-evoked [Ca(2+)](i) increases were inhibited by a removal of external Ca(2+) and antagonists for TRPA1, but not for TRPV1 or voltage-dependent Ca(2+) channels. At -80 mV, NaHS evoked inward currents in MO-sensitive neurons, which were also inhibited by a TRPA1 antagonist. Even at lower concentration (<= 1 mu M), the 10-min application of NaHS increased [Ca(2+)](i) in a time- and concentration-dependent manner. These results suggest that H(2)S stimulates sensory neurons via activation of TRPA1. Endogenous H(2)S may be involved in physiological processes through TRPA1. (C) 2011 Elsevier Ireland Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available