4.4 Article

Oxytocin is neuroprotective against oxygen-glucose deprivation and reoxygenation in immature hippocampal cultures

Journal

NEUROSCIENCE LETTERS
Volume 477, Issue 1, Pages 15-18

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.neulet.2010.04.024

Keywords

Oxytocin; GABA; Neuroprotection; Oxygen-glucose deprivation; Hippocampal cultures

Categories

Funding

  1. Academy of Medical Sciences, Romania

Ask authors/readers for more resources

Oxytocin triggers an excitatory-to-inhibitory switch in GABA (gamma-aminobutyric acid) actions in immature neurons and this was found to increase their resistance to anoxic episodes. In this study we examined the neuroprotective effect of oxytocin on immature hippocampal cultures subjected to oxygen-glucose deprivation (OGD) both immediately after the insult, as well as after 6 h of reoxygenation. We measured metabolic activity fluorometrically using resazurin and found that cellular viability was increased in the oxytocin treated group both immediately after OGD, as well as after 6 h of reoxygenation. While the oxytocin receptor antagonist atosiban blocked the effect of oxytocin, the Na+-K+-2Cl(-) cotransporter (NKCC1) blocker bumetanide protected neurons after reoxygenation. The effects of oxytocin are dose-related. Our results suggest that oxytocin exerts a prolonged neuroprotective action on fetal neurons. Perinatal pharmacologic manipulation of oxytocin receptors may have detrimental effects by increasing susceptibility of the fetal brain to hypoxic-ischemic insults. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available