4.5 Article

Neuroprotective Effects of DTIO, A Novel Analog of Nec-1, in Acute and Chronic Stages After Ischemic Stroke

Journal

NEUROSCIENCE
Volume 390, Issue -, Pages 12-29

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2018.07.044

Keywords

ischemic stroke; DTIO; RIP1K; astrocyte; glial scar; inflammation

Categories

Funding

  1. National Natural Science Foundation of China [30973510, 81171104, 81473211]
  2. Jiangsu Key Laboratory of Neuropsychiatric Diseases [BM2013003]
  3. Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases
  4. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)

Ask authors/readers for more resources

Receptor-interacting protein 1 kinase (RIP1K) plays a key role in necroptosis. Necrostatin-1 (Nec-1), a specific inhibitor of RIP1K, provides neuroprotection against ischemic brain injury, associating with inhibition of inflammation. Recently, our group synthesized a novel analog of Nec-1, 5-(3',5'-dimethoxybenzal)-2-thio-imida zole-4-ketone (DTIO). The present study investigated the effect of DTIO on ischemic stroke-induced brain injury in both acute and chronic phase and its underlying mechanism. In vivo, DTIO treatment reduced infarct volume and improved neurological deficits in the acute phase after permanent middle cerebral artery occlusion (pMCAO) and it also attenuated brain atrophy and promoted brain functional recovery in the chronic phase post-cerebral ischemia/reperfusion (I/R). In vitro, DTIO treatment decreased lactate dehydrogenase (LDH) leakage and necrotic cell death in the oxygen and glucose deprivation (OGD) or oxygen and glucose deprivation and reoxygenation (OGD/R)-induced neuronal or astrocytic cell injury. Simultaneously, DTIO suppressed the production and release of inflammatory cytokines, and reduced the formation of glial scar. Homology modeling analysis illustrated that DTIO had an ability of binding to RIP1K. Furthermore, immunoprecipitation analysis showed that DTIO inhibited the phosphorylation of RIP1K and decreased the interaction between the RIP1K and RIP3K. In addition, knockdown of RIP1K had neuroprotective effects and inhibited the release of proinflammatory cytokines, but didn't have a significant effect on DTIO-mediated neuroprotection. In conclusion, DTIO has protective effects on acute ischemic stroke and promotes functional recovery during chronic phase, associating with protecting ischemic neurons and astrocytes, inhibiting inflammation, and lessening the glial scar formation via inhibiting of the RIP1K. (C) 2018 Published by Elsevier Ltd on behalf of IBRO.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available