4.5 Review

BRAIN-DERIVED NEUROTROPHIC FACTOR-ESTROGEN INTERACTIONS IN THE HIPPOCAMPAL MOSSY FIBER PATHWAY: IMPLICATIONS FOR NORMAL BRAIN FUNCTION AND DISEASE

Journal

NEUROSCIENCE
Volume 239, Issue -, Pages 46-66

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2012.12.029

Keywords

neurotrophin; area CA3; dentate gyrus; 17 beta-estradiol; estradiol; trkB

Categories

Funding

  1. NIH [MH-097763, MH-067763, DA-008259, NS-37562]
  2. New York State Office of Mental Health
  3. NSERC Discovery Grant [197293-2007]

Ask authors/readers for more resources

The neurotrophin brain-derived neurotrophic factor (BDNF) and the steroid hormone estrogen exhibit potent effects on hippocampal neurons during development and in adulthood. BDNF and estrogen have also been implicated in the etiology of diverse types of neurological disorders or psychiatric illnesses, or have been discussed as potentially important in treatment. Although both are typically studied independently, it has been suggested that BDNF mediates several of the effects of estrogen in the hippocampus, and that these interactions play a role in the normal brain as well as disease. Here we focus on the mossy fiber (MF) pathway of the hippocampus, a critical pathway in normal hippocampal function, and a prime example of a location where numerous studies support an interaction between BDNF and estrogen in the rodent brain. We first review the temporal and spatially regulated expression of BDNF and estrogen in the MFs, as well as their receptors. Then we consider the results of studies that suggest that 17 beta-estradiol alters hippocampal function by its influence on BDNF expression in the MF pathway. We also address the hypothesis that estrogen influences the hippocampus by mechanisms related not only to the mature form of BDNF, acting at trkB receptors, but also by regulating the precursor, proBDNF, acting at p75NTR. We suggest that the interactions between BDNF and 17 beta-estradiol in the MFs are potentially important in the normal function of the hippocampus, and have implications for sex differences in functions that depend on the MFs and in diseases where MF plasticity has been suggested to play an important role, Alzheimer's disease, epilepsy and addiction. This article is part of a Special Issue entitled: Steroid hormone actions in the CNS: the role of BDNF. (c) 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available