4.5 Article

INHIBITION OF TRANSFORMING GROWTH FACTOR BETA-ACTIVATED KINASE 1 CONFERS NEUROPROTECTION AFTER TRAUMATIC BRAIN INJURY IN RATS

Journal

NEUROSCIENCE
Volume 238, Issue -, Pages 209-217

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2013.02.022

Keywords

TAK1; traumatic brain injury; 5Z-7-oxozeaenol; NF-kappa B; AP-1; inflammation

Categories

Funding

  1. National Natural Science Foundation, China [81171170]
  2. Nature Science Foundation of the Jiangsu Province, China [BK2010459]

Ask authors/readers for more resources

The transforming growth factor beta-activated kinase 1 (TAK1), a member of the Mitogen-activated protein kinase kinase kinase family, is characterized as a key regulator in inflammatory and apoptosis signaling pathways. The aim of the present study was to evaluate the role of the TAK1 pathway in experimental traumatic brain injury (TBI) in rats. Adult male Sprague Dawley rats were subjected to TBI using a modified Feeney's weight-drop model. The time course showed that a significant increase of TAK1 and p-TAK1 expression in the cortex after TBI. Moreover, TBI induced TAK1 redistribution both in neurons and astrocytes of the lesion boundary zone. The effects of specific inhibition of the TAK1 pathway by 5Z-7-oxozeaenol (OZ, intracerebroventricular injection at 10 min post-trauma) on histopathological and behavioral outcomes in rats were assessed at 24 h post injury. The number of TUNEL-positive stained cells was diminished and neuronal survival and neurological function were improved with OZ treatment. Biochemically, the high dose of OZ significantly reduced the levels of TAK1 and p-TAK1, further decreased nuclear factor-kappa B and activator protein 1 activities and the release of inflammatory cytokines. In addition, we found that both 10 min and 3 h post-trauma OZ therapies could markedly improve neurological function and neuronal survival after long-term survival. These results revealed that the TAK1 pathway is activated after experimental TBI and the inhibitor OZ affords significant neuro- protection and amelioration of neurobehavioral deficits after experimental TBI, suggesting a potential rationale for manipulating this pathway in clinical practice. (C) 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available