4.5 Article

GLUTAMATE TRANSPORTER TYPE 3 KNOCKOUT MICE HAVE A DECREASED ISOFLURANE REQUIREMENT TO INDUCE LOSS OF RIGHTING REFLEX

Journal

NEUROSCIENCE
Volume 171, Issue 3, Pages 788-793

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2010.09.044

Keywords

anesthesia; glutamate transporter; gene expression; hypnosis; isoflurane

Categories

Funding

  1. National Institutes of Health, Bethesda, Maryland [GM065211, GM065211-07S1]
  2. International Anesthesia Research Society
  3. American Heart Association Mid-Atlantic Affiliate [0755450U]

Ask authors/readers for more resources

Excitatory amino acid transporters (EAAT) uptake extracellular glutamate, the major excitatory neurotransmitter in the brain. EAAT type 3 (EAAT3), the main neuronal EAAT, is expressed widely in the CNS. We have shown that the volatile anesthetic isoflurane increases EAAT3 activity and trafficking to the plasma membrane. Thus, we hypothesize that EAAT3 mediates isoflurane-induced anesthesia. To test this hypothesis, the potency of isoflurane to induce immobility and hypnosis, two major components of general anesthesia, was compared in the CD-1 wild-type mice and EAAT knockout mice that had a CD-1 strain gene background. Hypnosis was assessed by loss of righting reflex in this study. The expression of EAAT1 and EAAT2, two widely expressed EAATs in the CNS, in the cerebral cortex and spinal cord was not different between the EAAT3 knockout mice and wild-type mice. The concentration required for isoflurane to cause immobility to painful stimuli, a response involving primarily reflex loops in the spinal cord, was not changed by EAAT3 knockout. However, the EAAT3 knockout mice were more sensitive to isoflurane-induced hypnotic effects, which may be mediated by hypothalamic sleep neural circuits. Interestingly, the EAAT3 knockout mice did not have an altered sensitivity to the hypnotic effects caused by ketamine, an i.v. anesthetic that is a glutamate receptor antagonist and does not affect EAAT3 activity. These results suggest that EAAT3 modulates the sensitivity of neural circuits to isoflurane. These results, along with our previous findings which suggests that isoflurane increases EAAT3 activity, indicate that EAAT3 may regulate isoflurane-induced behavioral changes, including anesthesia. (C) 2010 Published by Elsevier Ltd on behalf of IBRO.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available