4.5 Article

SEROTONIN UPREGULATES LOW- AND HIGH-THRESHOLD TETRODOTOXIN-RESISTANT SODIUM CHANNELS IN THE SAME SUBPOPULATION OF RAT NOCICEPTORS

Journal

NEUROSCIENCE
Volume 165, Issue 4, Pages 1293-1300

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2009.11.042

Keywords

Na(v)1.8; Na(v)1.9; hyperalgesia; sensory neuron; dorsal root ganglion

Categories

Funding

  1. Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center

Ask authors/readers for more resources

The modulation by serotonin (5-HT) of low- and high-threshold tetrodotoxin- (TTX) resistant Na(+) currents was studied in small-diameter (approximate to 25 mu m) acutely-isolated rat dorsal root ganglion (DRG) cells. Each DRG cell included in the study was classified as type 2 or non-type 2, based on expression of a low-threshold A-type K(+) current. When cells of either type were recorded from using a CsF based internal solution and a holding potential (HP) of -80 mV, the apparent threshold for activation of TTX-resistant Na(+) currents ranged from -75 to -60 mV. A 500 ms prepulse to -60 mV greatly suppressed currents evoked by test potentials (TPs) to -75 through -35 mV. A similar scenario was observed when the CsF based internal solution was changed for one that contained CsCl, except that the apparent threshold of activation was shifted by about +25 mV, and currents evoked by TPs to -55 to -35 mV in the absence of a prepulse were much smaller than their counterparts observed with the CsF internal. These data suggest two types of TTX-resistant Na+ currents; one with a low-threshold for activation that is enhanced by the presence of fluoride inside the cell and is inactivated by holding at -60 mV, and one with a higher threshold for activation that is not inactivated by holding at -60 mV. In type 2 DRG cells, 10 mu M 5-HT upregulated low-threshold currents evoked by TPs to -55 to -35 mV from HP -80 mV, as well as high-threshold currents evoked by more depolarized TPs from HP -60 mV. However, when cells were held at -60 mV, 5-HT did not upregulate currents evoked by TPs to -35 or -30 mV, suggesting that the low-threshold current was nearly completely inactivated. Previous studies have suggested that type 2 DRG cells are nociceptor cell bodies. If 5-HT produces similar effects in type 2 DRG cell peripheral receptors, the upregulation of the low-threshold currents may serve to lower the threshold for nociception, while the upregulation of the high-threshold current may strengthen nociceptive signals. (C) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available