4.5 Review

REGULATION OF WATER PERMEABILITY THROUGH AQUAPORIN-4

Journal

NEUROSCIENCE
Volume 168, Issue 4, Pages 885-891

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2009.10.029

Keywords

water channel; proteoliposome; oocyte; metal ions; phosphorylation; arylsulfonamides

Categories

Funding

  1. Japan Society of Promotion of Science
  2. Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan
  3. Japan New Energy and Industrial Technology Development Organization (NEDO)
  4. MEXT

Ask authors/readers for more resources

Aquaporin-4 (AQP4) is a predominant water channel protein in mammalian brains that is distributed with the highest density in the perivascular and subpial astrocyte end-feet. AQP4 is a critical component of an integrated water and potassium homeostasis. Expression and regulation of AQP4 have been studied to understand the roles of AQP4 in physiology and several pathological conditions. Indeed, AQP4 has been implicated in several neurological conditions, such as brain edema and seizure. AQP4 is dynamically regulated at different levels: channel gating, subcellular distribution, phosphorylation, protein protein interactions and orthogonal array formation. In this review, we focus on the short-term regulation of AQP4. Phosphorylation of AQP4 is important; AQP4 is inhibited when Ser180 is phosphorylated and activated when Ser111 is phosphorylated. AQP4 is also regulated by several metal ions. These metal ions inhibit AQP4 by interacting with the Cys178 residue located in the cytoplasmic loop D, suggesting that AQP4 is regulated by intracellular signaling pathways in response to extracellular stimuli. Recently, it was demonstrated that AQP4 may be inhibited by arylsulfonamides, antiepileptic drugs and other related chemical compounds. Structural analysis of AQP4 may guide a drug design for AQP4. (C) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available