4.5 Article

TEMPERATURE DEPENDENCE OF N-METHYL-D-ASPARTATE RECEPTOR CHANNELS AND N-METHYL-D-ASPARTATE RECEPTOR EXCITATORY POSTSYNAPTIC CURRENTS

Journal

NEUROSCIENCE
Volume 165, Issue 3, Pages 736-748

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2009.10.058

Keywords

N-methyl-D-aspartate receptor; hypothermia; hyperthermia; patch-clamp recording; synaptic transmission

Categories

Funding

  1. Grant Agency of the Czech Republic [30910710271]
  2. AS CR [AV0Z 50110509]
  3. EC [LSHM-CT-2007-037765]
  4. Ministry of Education, Youth and Sports of the Czech Republic [1M0002375201, LC554]

Ask authors/readers for more resources

N-methyl-D-aspartate (NMDA) receptors (NMDARs) are highly expressed in the CNS and mediate the slow component of excitatory transmission. The present study was aimed at characterizing the temperature dependence of the kinetic properties of native NMDARs, with special emphasis on the deactivation of synaptic NMDARs. We used patch-clamp recordings to study synaptic NMDARs at layer II/III pyramidal neurons of the rat cortex, recombinant GluN1/GluN2B receptors expressed in human embryonic kidney (HEK293) cells, and NMDARs in cultured hippocampal neurons. We found that time constants characterizing the deactivation of NMDAR-mediated excitatory postsynaptic currents (EPSCs) were similar to those of the deactivation of responses to a brief application of glutamate recorded under conditions of low NMDAR desensitization (whole-cell recording from cultured hippocampal neurons). In contrast, the deactivation of NMDAR-mediated responses exhibiting a high degree of desensitization (outside-out recording) was substantially faster than that of synaptic NMDA receptors. The time constants characterizing the deactivation of synaptic NMDARs and native NMDARs activated by exogenous glutamate application were only weakly temperature sensitive (Q(10)=1.7-2.2), in contrast to those of recombinant GluN1/GluN2B receptors, which are highly temperature sensitive (Q(10)=2.7-3.7). Ifenprodil reduced the amplitude of NMDAR-mediated EPSCs by similar to 50% but had no effect on the time course of deactivation. Analysis of GluN1/GluN2B responses indicated that the double exponential time course of deactivation reflects mainly agonist dissociation and receptor desensitization. We conclude that the temperature dependences of native and recombinant NMDAR are different; in addition, we contribute to a better understanding of the molecular mechanism that controls the time course of NMDAR-mediated EPSCs. (C) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available