4.3 Article

Type C botulinum toxin causes degeneration of motoneurons in vivo

Journal

NEUROREPORT
Volume 21, Issue 1, Pages 14-18

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/WNR.0b013e328330dcca

Keywords

neuronal death; neurotoxin; spinal cord

Categories

Funding

  1. NIH/NIAID [P01 AI055789]

Ask authors/readers for more resources

All botulinum toxins (BoNTs, types A-G) inhibit synaptic transmitter release from motoneurons, and thus result in respiratory arrest and death. Rapid treatment with anti-BoNT antibodies can prevent progression, but recovery still requires weeks on a ventilator. Even after recovery, there is a potential for persistent fatigue in some cases of botulism even years after the insult possibly because of motoneuron dropout for previously unknown reasons. Unique among BoNTs, the C-type (BoNT/C) cleaves two proteins involved in neurotransmitter release, syntaxin and SNAP-25, and induces apoptotic cell death in cultured cerebellar neurons. It is not clear, however, whether BoNT/C also affects neurons that encounter toxin in vivo, namely motoneurons. Here, we provide experimental evidence that BoNT/C causes a slow degeneration of motoneurons both in vitro and in vivo. This novel form of BoNT/C-induced cell death may require new treatment strategies. NeuroReport 21:14-18 (C) 2010 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available